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SUMMARY

The classical EHL point contact problem is solved using a new
"system-approach," sinilar to that introduced by Houpert and Hamrock for the
line-contact problem. Introducing a body-fitted coordinate system, the troublesome
free-boundary is transformed to a fixed domain. The Newton-Raphson method can then
be used to determine the pressure distribution and the cavitation boundary subject to

um the Reynolds boundary condition. This method provides an efficient and rigorous way
of solving the EHL point contact problem with the aid of a supercomputer and a
promising method to deal with the transient EHL point contact problem. A typical
pressure distribution and film thickness profile are presented and the minimum film
thicknesses are compared with the solution of Hamrock and Dowscn. The details of the
cavitation boundaries for various operating parameters are discussed.

NOMENCLATURE

a,b semi-major and semi-minor axes of contact ellipse, m

E The Young modulus of elasticity, Pa

2 (1- A) - 2

E' equivalent elastic constant, Pa - - +___,__
E' E ED .

AB

f normal force, N

G dimensionless material parameter, aE'

G dimensionless cavitation boundary
vall ndfer

cavitation boundary function Dist Spe1al

H dimensionless film thickness
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Hmin  dimensionless minimum film thickness

H0  dimensionless reference film thickness

h film thickness, m

hmin  minimum film thickness, m

ho reference film thickness, m

k ellipticity parameter

normal direction

P dimensionless pressure

P0  Roelands pressure-viscosity constant, 1,96e8 Pa

p pressure, Pa

Ph Hertzian pressure, Pa

u mean entraining velocity, m/s

x,y cartesxan coordinates

INTRODUCTION

In the design of nonconformal contact machine elements, knowledge of elasto-
hydrodynamic lubrication (EHL) is needed. Since the 1970's, several authors have
presented their results of the point-contact EHL problem. Among them, the following
Hamrock and Dowson (H.D.1 formula (ref. 1) is widely used in the design of many
machine elements:

(Hmin)H.D. 3.63U 68G0.49 W .073(1 _ 0 68k) ()
For an EHL solution, a nonlinear integro-differential equation must be solved,

the Reynolds equation and the elasticity equation. The nonlinear.:ies are due to:
(1) the dependence of the lubricant properties, (viscosity and density), on the
pressure; (2) the dependence of the film thickness on the pressure; and (3) the free
boundary at the exit region. Even for the hydrodynamic lubrication, since the free
boundary is dependent on the pressure distribution, the Reynolds equation has non-
linear characteristics. It is well known to computational lubrication engineers that
the numerical treatment of the point-contact EHL problem has inherent difficulties.
One can see how difficulties arise upon careful consideration of the above mentioned
nonlinearities. For example, one of the major difficulties is the piezoviscous
effect. At high loads the viscosity of the fluid can vary by 10 orders of magnitude
within the conjunction, which caused the pressure spikes and numerical difficulties.

Another difficulty associated with solving the EHL point-contact case is to
locate the free boundary where cavitation occurs. In the solution presented by H.D.
Christopherson's method (ref. 2) was used together with a Gauss-Seidel iterative
scheme. The essence of this method is to truncate the negative pressures as they
occur during iteration and the outlet boundary is located automatically. Oh and
Rhode (ref. 7) solved the point contact EHL problem using a finite element method and
Newton's method. But, it has been fcund that the nonnegativity condition was needed
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Newton's method. But, it has beer, found that the nonnegativity condition was needed
to be checked in each iteration and the discrimination between the continuous film
region and the cavitated Legion was troublesome. Though the solution can be obtained
it is unavoidable that the solution i dependent upon the mesh size distribution near
the boundary.

Finally, the large amount ,)f computation time and computer memory space are
concerns in this calculation. Thie majority of CPU time is devoted to the calculation
of the elastic deformation. In general, the Gauss-Seidel iterative method requires
more than one hundred tim-es of iterations to obtain the converged solution. Further-
more, to obtain a solution for a given load, one additional loop is required to find
the reference film thickness.

This all adds up to the fact that it is very difficult to achieve a stable
solution at relativaly h.gh loads and short CPU times. Recognizing this, Houpert and
Hamrock (ref. 8) devised an elegant scheme for the line contact case that enabled
higher load calculationz and saved on computational time as well. This scheme was an
adaptation of Okamura (ref. 9) and became known as the "system approach." Using a
Newton-Raphson algorithm, the pressures, the integration constant, ard the reference
film thickness are found simittaneously. Here advantage has been taken of the fact
that the one-dimensional R;_ynolds equation can be integrated analytically to obtain
dp/dx and in turn used with the Reynolds' boundary conditions to locate the cavi-
tation boundary.

To the author's knowleage, the system-approach has not been successfully applied
to the point-contact problem. Unlike the line-contact case, the two dimensional
Reynolds equation can not be integrated analytically. However, a successful
formulation of the system-approach can nevertheless be accomplished by introductng a
body-fitted coordinate systen. and transforming the unknown physical boundary into a
fixed computation&- 'oundary. The unknown boundary function becomes a part of the
system matrix. In dddition, the reference film thickness can be calculated
simultaneously as was done in the line-contact case. This reduces the number of
visits to the elastic deformation subroutine substantially. However, as was pointed
out by Lubrecht et al., (re!. 3), computer memory may be a problem since the Jacobian
matrix is a full matrix e,, . he elAticity equation. This problem can be overcome
by using the block tridiagonal approximation of the system matrix. The matrix
inversion is accomplished by the T".omas algorithm, and there is no need to store the
whole Jacobian matrix. Furthermore, the force-balance L:op can be obviated by
including it in the system equations and solving simultaneously.

In this paper, the classical EHL point-contact pcoblem is revisited with a new
formulation: a free boundary value problem using the system-approach described
above. The mini.-;um film thicknesses are compared with equation (1) and the details
of the free boundary are discussed.

2. ANALYTIC FORMULATION

2.1 Contact Geometry

Figure 1 shows the physical model of the elliptical contact, where the x-axis
represents the rolling or sliding direction, xA and ya are the inlet boundaries
and x = 4(y) is the outlet or cavitation boundary. The ellipticity parameter is
expressed in terms of the curvature difference (T), the elliptic integral of the
first (F), and the second kind (S) as
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k - F2F- -S(l + T) (2)
' S(I -T)

where

s 1 r{ - [i - isi# J d1/2

Flr2 -: jsin'#o I do/

Defining ras R/R , euE/tion (2) can be rewritten as

k. 2

k - (r + 1) F - ri (3)
L s

Therefore, given r, the ellipticity parameter can be calculated iteratively.

2.2 Governing Equations

Assuming isothermal conditions and that the lubricant Ls Newtonian, the steady-
state Reynolds equation for the point contact problem is

a [ h -Op ] _0 Lrh2 -p ] 12u m a(ph) (4)
axL P a ay # y u ax

and, using the parabolic approximation for the geometry, the film thickness is
expressed by

2 2 p(x',y')'dx'dy'
h(x,y) wh 0  +. + =, f l VJ ----------------- (5)

2R) 2R Y 1E 1 2 ,Sx - x')2 + (y-_y,

The applied normal force may be balanced by the generated hydrod-,namic pressure
distribution,

f f f,, p(x,y)dx dy (6)
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Applying the Reynolds boundary condition and symmetry condition at the x-axis,
the boundary conditions are:

p = 0 at X a XA; 0 y Ya,

p = 0 at xA z = x _ (ys); y = ye,

8" (7)
P - 0; I' . 0 at x - 4(y); 0 y Y'

-P 0 at x A  x < (O); y 0,

The viscosity-pressure relation is modeled by the Roelands (11) equation, i.e.,

#0 a 1~ +11 (8)e1+2 -iI

z
- (ln #0 + 9.67) (9)
P0

and, the Dowson-Higginson relation (12) is used for the density-pressure relation,

0.59x109 + 1.34pp --p 0  p a.n Pa (10)

0.59xi09 + p

2.3 The Dimensionless Equations

Letting

P hRx x y gP _ H - _ , X - _, Y = _ , G
Ph b2 b a b

a ph b 3

2lrab #0 PO

the equations (4) to (6) become

a J + 1 8 (p 3'XX (TH)  (11)

F (X,Y) -H 0 + I (x2 + c Y2) + 2c2 f f P1(X'Y'dX' dY' (12)2ff2 0l /7X X k 2  ,)X- X' )2 + (y _ y,2

f J'P(X, Y)dX dY - 3 (13)
3

2
12#0UmRx k2 k1PhRx

where, - , , 2 =

b Ph r E'b
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The dimensionless parameters used here can be related to those used by Hamrock and
Dowson as follows,

W La)

3 Gwk R .12

(14)
k1r(l + r)

4Sr

a 6Wk2S r

R Ir 1 + r

when K = 1 (circular contact), cI and c2 are 1.

2.4 Coordinate Transformation

Introducing the body-fitted coordinate system described in reference 13,

Y (X - XA)

G - xA

Y (15)

the following equations are obtained:

The Reynolds equation

2//

LG. H) _YB_ [8 " 1 + I [q a - __aq _a

L1(,G,0)2 -F '7 - GXA( - xA) 2  k2  k' F1 (16)
(16)

ta' a) ap {e, a ap Y Bg a
k2 XA) R [q T) + k2( A2 at ) G -X A (PH) -0

where, c' represents d6/dY.
The film thickness equation

1 e x A) 12 2 2c2 (17)
H(tn) M o H + + XA  + C i{ + D(P,d)

The D represents an integral operator which calculates the elastic deformation of
two solids in contact resulting from the pressure distribution in the fluid film
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region (0). In this paper, the technique presented by Chang (ref. 14) is used. This

method provides and efficient way of evaluating D without lengthy and complex

mathematical expressions. Since the coordinate transformation can easily be

implemented to this method, the details of the algorithm are not presented here.

The force balance equation is

fyB fYB G - X A 2ff (18)
L 2(p'G 2 f0 0o P (~f)dc dn

In the above formulation, L1  is the nonlinear partial differential operator and L2
is integral operator.

3. NUMERICAL METHOD

3.1 Spatial Discretization

To prmvide a small mesh size near the pressure spike region, an interior

stretching function (ref. 15) is adopted along the i-axis. The finite difference

representat..on of the transformed Reynolds equation is provided in the appendix.

3.2 Newton's Method

The system equations are

L1 (P,G,Ho) = 0

L2(P,G) - 0 (19)

In reference 13, for hydrodynamic case, L1 has been solved using the Thomas

algorithm to find P and G, and L2 was used to determine H0 by the force
balance loop. For the EHL case, the same method can be used. However, if L2 can

be put in the system equation and be solved simultaneously without creating a

computer memory problem, the computation will be greatly reduced.

The system equation for Newton's method can be written as

{(A) (B) (6I = (20)
(C) 01 ,

(u} + {u} ° + (bul (21)

n+ . n

H0  -H 0 + 06H0  (22)

where

{u} - {Pi, ,GJ), I - 2, NI - 1; J- 1, NJ - 1

and (A], {B}, {C}T are the elements in the Jacobian matrix.

In EHL, due to the integral operator D, (A] is full matrix. But, since large

amounts of storage and computational time are required to solve it, the block
tridiagonal matrix approximation can be used. Each block matrix is a full matrix

which is different from the one-sided arrow shape matrix that resulted from the
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hydrodynamic case where the elasticity equation is not needed. The unknown
matches the residual function at the cavitation boundary where the pressures are
known from the Reynolds boundary condition.

Equation (20) can be rearranged as

,A](6u + (B)H 0 -{L,} (23)

(C)T(6ul - L2  (24)

From equation (23)

(6u}- (A]'{L} (A) (BH !25)

Then using equations (24) and (25)

6H 2 -  (C)T A)-1{(L})26)
0 {C}'[.A] -'{B}

And {j6u} can be calculated using equations (25) and (26). In equation (26), (A)- {B}
and [A] {Li} are obtained by the Thomas algorithm and then stored temporarily and
used in equation (25).

The convergence criteria are

(1) Pressure

l +1 nl
PIJ " PI,J

T J < 5.0x10 3

Pn.
I J

(2) Cavitation boundary k -
__ _ _ < 5.OxlO

3

ll

(3) Reference film thickness

n+1 nIH - H0 < 5.0xl0 -3

n
Ho

4. RESULTS AND DISCUSSION

The dimensionless material parameter used in this analysis is G = 3488 in which
z = 0.55, 10 = 0.018 Ns/m 2 , V = 0.3 and E' = 2.19x10"11 N/m2. In figures 2 and 3,
the pressure distribution and film thickness profile for the circular contact is
presented. The Inlet boundary used for this analysis is defined as XA = -4.0 and
YB = 2.0. The maximum pressure is 1.33 times the maximum Hertzian pressure or
515 MPa which occurs on the x-axis. The dimensionless minimum film thickness is 0.27
and it occurs at the side-lobes, X = 0.49 and Y = 0.6.
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The majcrity of the computation time is used for the calculation of the elastic
deformations and the differentiations of the residual functions with respect to the
cavitation boundary function since the integral operator is a function of it. It
takes about 20 sec on the CRAY-XMP at NASA Lewis Research Center for 1 Newton
iteration with 3060 nodal points of the whole domain, and, in general, the converged
z.-.ution can be obta.nad within 3 iterations as long as the initial guess is within
the sphere of attraction. It was -sported (ref. 3) that using the multigrid
interative method it took 2 hr of (PU time on a VAX11/750 with 2937 nodal points.
Since a different computer was used, c direct comparison is difficult. The current
method is quite fast partly because the direct matrix inversion of the block matrices
is vertorizable which makes it well suited to the supercomputing. Also because the
amount of visits to the elasticity -brnutine is small and there is no need of a
force bcalance loop. When the current work is used for transient calculations, the
previous solution is used as a guess to the next time step and it accelerate the
solution process, but this is not true for the iterative method. This fact supports
the current work as a good candidate for transient EHL point contact computation.

The calculated minimum film thickness in this investigation for various operating
parameters are provided in table I along with those ootained from the H.D. Formula,
equation 1. In general, the results frs.a this analysis were higher than those
predicted by the H.D. for the circular contact case. However, for the elliptical
contact our results were lower. But the differences do not exceed 10 percent.

Figure 4 shows another pressure distribution for circular contact where a very
steep pressure spike occurs. The operating condition is W = 9.154x0 "8,
U = 1.62xi0 "l , or 1 = 5.723 and X = 0.862. The maximum pressure is 2.89 times the
maximum Hertzian pressure or 1.04 GPa. To the authors' experience, the solution is
so unstable beyond this operation range that the convergence usually fails. When
U = 6.43xl0"12, the maximum possible W is 2.367xl0 for circular contact, or =

7.862 and X = 0.0964. According to numerous computations, it is found that the
value of Z dictates the numerical stability of current method. The numerical
stability may be enhanced by reducing the step sizes near the pressure spike region.
But it should be noticed that the Roelands viscosity-pressure relation is known to be
valid up to 1 GPa or lower. At such ahigh nressure the lubricant behaves as a
solid-like material and becomes non-Newton.an. Also, recently, it was observed that
slippage of the lubricant otcurs at or very near the surface (ref. 16). Thus it is
believed that the modification of the classical Reynolds equation including the non-
Newtonian effect and a more realistic pressure-viscosity relation including the
thermal effect are needed to investigate the lubrication performance for the high
load and high speed cases.

Figure 5 depicts the calculated free boundaries of the circular contacts for
various operating parameters. The x-axis is somewhat stretched to exaggerate the
differences. The dotted line represents the Hertzian circle. The general trend is
that, as expected, the low speed condition results in a curve that conforms more to
Hertzian (dry) contact circle. Comparing curves 1 and 2, the boundary on the X-axis
stretches more outside for the higher load but elsewhere it is closer to the Hertzian
contact circle. Comparing curves 3 and 4, increasing the speed parameter leads to a
thicker film and tends to straighten out the boundary.

5. CONCLUSIONS

The classical EHL point contact problem is solved using a new "system-approach,"
similar to that introduced by Houpert and Hamrock for the line-contact problem. This
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requires inverting a system-matrix (i.e., the Jacobian) which via a body-fitted
coordinate transformation includes boundary conditions at the free boundary.
Further, a force-balance loop is avoided. Using a Newton-Raphson algorithm, the
pressures, the cavitation boundary curve, and the reference film thickness are found
simultaneously. The method is computationally fast and has no problem with locating
the cavitation boundary. This study revealed that

1. The minimum film thickness obtained in thit study were all within 10 percent
of the predictions using the H.D. Formula.

2. The algorithm is well suited to performing transient EHL calculations using
the supercomputer and the solution at each time step accelerates the succeeding
solution.

3. Numer.cal instabilities were encountered when the value of a, that ia, W or
C is high. To obtain a more stable solution, it is believed that the Reynolds
equation should be modified to include the non-Newtonian effect and a more realistic
pressure-viscosity relation for high pressure.

4. The calculated cavitation boundary is near the Hertzian contact circle but
deviates it for high speed.
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APPENDIX - DISCRETIZATION ON THE TRANSFORMED REYNOLDS EQUATION FOR k =1.

ql 1 / 2 ,J 
R

=L ' (Ri + CI+1/21\7) rc (P1  l' - Pi1 ) - (R1  + l111.R )ql 1 2, (l

(Pl ~ ~ _ ' P 1J -- q R Rq .4 1/DP q, DP'

R21  r J12P, -P1 ) 3 1 R5 -. 22)

-R6 ( 1 1 1 2 DP3  q, 1/,JDP 4 ) -R 8(7 1+1 /2,jH1 +1 /2 ,j 0 1 ~ 2 3 1 1 2

where,

2
2Y

( -XA) 2 (1 + oC

2
R2  2

(13 r,7)A

R4 G' J+1/2

G -1/ X.

R5
G -1/ XA

R6  = _ __ _ _ __ _ __ _ _ __ _ _
(G'-XAfr,7 (1 + r,) (1 + 4- AA

R72 1(6'3 )

(I + r,) Ae
2 (aj XA )2

2XY
(a X

e-~ -~-

An- ' - n-

2 2
DP1  -r (P1 1,lj + plljl + (r~ 1) (P" + P 1,i,1 ) + (P 1 .,1 3 +P+,J
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3

2P r( 1 , + + (r~ 2 1) (P + + 1 ,

2P 2 r ( ,,. lIJI 'j1 P l' 11J

2P -- (P + P+ ) +) (r + 1 +' (Pr ~ + P 1 ,, +x)

DP 4 m r,(P 1 > + + (r -1) (P 1  + + + + 11j1
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TABLE I. - SELECTED MINIMUM FILM THICKNESS

r k UX10 ~ W XlO 8  Hmi ilH ~ - H i .X 0

1.0 1.0 6.432 6.721 0.398 0.3697.
1.0 1.0 6.432 11.227 0.270 0.2526.
1.0 1.0 7.968 5.566 0.525 0.4906.
1.0 1.0 16.204 5.566 0.798 0.794 0.5
6.0 3.25 6.432 13.700 0.729 0.763 -4.7
6.0 3.25 6.432 27.464 0.433 0.456 -2.9

16.0 6.037 6.432 32.707 0.626 0.654 -4.5

2.5

1.7

0.

XA X

-Cavitation -40 -2.7 -1.5 -. 21 .1
boundary x-axis

Figure 1.-Point contact EHL model. Figure 2 -Pressure distribution for W = 1.123 x 10-7,
U =6.432 x 10-12 , G =3488, and k= 1.

14



.27

M 25
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199

-9 -4 .1 .6 11-40 -2.7 -1i5 -2 1 0
x -axis x -x axis ---

Figure 3. -Film thickness profile near cont act Figure 4 -Pressure distribution tof W =9 154 x 10-- .
for parameters in Figure 2. U = 1.620 x 10 tG =3488, and k 1.

Curve
number

1 W 1 123E-7 LU = 6.432E- 12
2 W =6.712E-8. U =6.432E-12
3 W = 5.566E-8, U = 7 968E-12
4 W = 5.566E-8. U = 1 620E-1 1

2- 3

-2 L
Figure 5 -Calculated cavitation boundaries.
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